Long-term acclimatory response to excess excitation energy: evidence for a role of hydrogen peroxide in the regulation of photosystem II antenna size.

نویسندگان

  • Maria M Borisova-Mubarakshina
  • Boris N Ivanov
  • Daria V Vetoshkina
  • Valeriy Y Lubimov
  • Tatyana P Fedorchuk
  • Ilya A Naydov
  • Marina A Kozuleva
  • Natalia N Rudenko
  • Luca Dall'Osto
  • Stefano Cazzaniga
  • Roberto Bassi
چکیده

Higher plants possess the ability to trigger a long-term acclimatory response to different environmental light conditions through the regulation of the light-harvesting antenna size of photosystem II. The present study provides an insight into the molecular nature of the signal which initiates the high light-mediated response of a reduction in antenna size. Using barley (Hordeum vulgare) plants, it is shown (i) that the light-harvesting antenna size is not reduced in high light with a low hydrogen peroxide content in the leaves; and (ii) that a decrease in the antenna size is observed in low light in the presence of an elevated concentration of hydrogen peroxide in the leaves. In particular, it has been demonstrated that the ability to reduce the antenna size of photosystem II in high light is restricted to photosynthetic apparatus with a reduced level of the plastoquinone pool and with a low hydrogen peroxide content. Conversely, the reduction of antenna size in low light is induced in photosynthetic apparatus possessing elevated hydrogen peroxide even when the reduction level of the plastoquinone pool is low. Hydrogen peroxide affects the relative abundance of the antenna proteins that modulate the antenna size of photosystem II through a down-regulation of the corresponding lhcb mRNA levels. This work shows that hydrogen peroxide contributes to triggering the photosynthetic apparatus response for the reduction of the antenna size of photosystem II by being the molecular signal for the long-term acclimation of plants to high light.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

LESION SIMULATING DISEASE 1 is required for acclimation to conditions that promote excess excitation energy.

The lsd1 mutant of Arabidopsis fails to limit the boundaries of hypersensitive cell death response during avirulent pathogen infection and initiates unchecked lesions in long day photoperiod giving rise to the runaway cell death (rcd) phenotype. We link here the initiation and propagation of rcd to the activity of photosystem II, stomatal conductance and ultimately to photorespiratory H(2)O(2)....

متن کامل

Acclimation of the Photosynthetic Apparatus to Photosystem I or Photosystem II Light: Evidence from Quantum Yield Measurements and Fluorescence Spectroscopy of Cyanobacterial Cells

Cells of the cyanobacterium Synechococcus 6301 were grown under illumination whose spectral composition favoured absorption either by the phycobilisome (PBS) light-harvesting antenna of photosystem II (PS II) or by the chlorophyll (Chi) a light-harvesting antenna of photosystem I (PS I). Cells grown under PS I-light developed relatively high PS II/PS I and PBS/Chl ratios. Cells grown under PS I...

متن کامل

Relationship between excitation energy transfer, trapping, and antenna size in photosystem II.

We present a systematic study of the effect of antenna size on energy transfer and trapping in photosystem II. Time-resolved fluorescence experiments have been used to probe a range of particles isolated from both higher plants and the cyanobacterium Synechocystis 6803. The isolated reaction center dynamics are represented by a quasi-phenomenological model that fits the extensive time-resolved ...

متن کامل

Effect of salicylic acid on photochemistry and antioxidant capacity in Salvia nemorosa plants subjected to water stress.

Oxidative stress is commonly induced when plants are grown under drought stress conditions.To analyze how salicylic acid (SA) can partly alleviate drought-induced oxidative stress and negative impacts of drought on physiology and growth of Salvia nemorosa plants, we investigated the physiological responses of S. nemorosa to SA application under drought stress. The treatments were composed of Co...

متن کامل

Crystal structure of plant light-harvesting complex shows the active, energy-transmitting state.

Plants dissipate excess excitation energy as heat by non-photochemical quenching (NPQ). NPQ has been thought to resemble in vitro aggregation quenching of the major antenna complex, light harvesting complex of photosystem II (LHC-II). Both processes are widely believed to involve a conformational change that creates a quenching centre of two neighbouring pigments within the complex. Using recom...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of experimental botany

دوره 66 22  شماره 

صفحات  -

تاریخ انتشار 2015